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Turbulent structure in a turbulent scalar dispersion field behind a fine cylindrical 
heat source in a weakly sheared flow is experimentally investigated and previous 
computational turbulence models for third-order scalar transport terms in the 
second-order turbulence equations are assessed with the present data. 

The mean temperature and r.m.s. temperature profiles are found to be almost 
Gaussian even in the uniform shear layer. Decay of the peak temperature, mean 
dispersion and half-widths of the mean temperature and the r.m.s. temperatures are 
well correlated with corresponding data on the scalar dispersion behind an elevated 
line heat source in the turbulent boundary layer. 

Normalized streamwise heat flux UB changes appreciably with the downstream 
distance owing to the influence of the uniform mean shear, whereas normalized 
vertical heat flux 8 remains the same with the downstream distance. The timescale 
ratio R between temperature and velocity fluctuations varies from 0.3 to 1.3 across 
the stream and it  asymptotes to a value 0.5 a t  far downstream. 

Assessment of previous models for third-order moments with the present data 
reveals that application of a composite timescale between the dynamic timescale and 
the thermal timescale to the simplest gradient transport model yields a better overall 
prediction performance than any existing models, including Lumley’s algebraic 
model equations for the moments. It was found that the timescale for the streamwise 
transports of 

In  addition, since the experiment isolates the effect of uniform mean shear on the 
turbulent scalar transport, experimental data accumulated by the present study will 
be useful for further development of more refined second-order turbulence models for 
non-isothermal turbulent flows. 

and is larger than that of lateral transports of 27 and 82. 

1. Introduction 
Since the Reynolds stress closure model for isothermal turbulent flows was 

established in the mid-l970s, turbulent transports of scalar quantities, be i t  
temperature, humidity, a pollutant or any other chemical, have attracted the 
attention of theoretical and experimental investigators. As with the modelling 
procedure for isothermal turbulent flows (as has been well-documented by Reynolds 
1976), a systematic way to develop the second-order closure model for the non- 
isothermal turbulent flow is to consider one turbulence mechanism at a time in order 
of increasing complexity, for example, in a sequence to determine the decay rate 
constant of scalar variance, pressure-temperature gradient correlation or the return- 
to-isotropy of the scalar flux vector and then third-order scalar transports. At each 
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stage of modelling, the simplest experiments which exhibit only the mechanism 
under consideration must be available to calibrate the model constant (or term). 

Such a systematic experimental approach to the problem of thermal turbulence 
has been taken by Warhaft & Lumley (1978) who studied the decaying rate of the 
passive temperature variance @ in approximately isotropic grid-generated 
turbulence. Based on these data, Newman, Launder & Lumley (1981) proposed a 
model for the decay rate ‘constant’ $, as a function of the mechanical/thermal 
timescale ratio r (=  (? /e) / (p/e , ) ) ,  Reynolds number R, and anisotropy of 
turbulence. An important result from these studies is that  the timescale ratio r varies 
in a range 0.6-2.4, and, thus, i t  is found that the governing equation for the 
destruction of temperature variance eo must be solved to provide the correct 
variation of r in the computation of the thermal turbulence field. 

In order to examine the effect of uniform strain on the evolution of thermal 
fluctuations, Warhaft (1980) carried out an experiment in which thermal fluctuations 
generated by an array of heated mandolin wires in a decaying grid-generated 
turbulence were passed through a four-to-one axisymmetric contraction. The effect 
of a passive cross-stream temperature gradient on the evolution of temperature 
variance and the heat flux vector was experimentally studied by Sirivat & 
Warhaft (1983). In  addition to  the cross-stream mean temperature gradient, 
Budwig, Tavoularis & Corrsin (1985) superimposed a streamwise mean tempt 3rature 
gradient on a grid-generated isotropic turbulence to investigate the effect of such a 
gradient field on the evolution of various statistics of thermal turbulence, for 
example, mean temperature, r.m.s. temperature fluctuations, the turbulent heat 
transfer correlation coefficient, the thermal Taylor microscale A,, and the skewness 
of the temperature fluctuation derivatives. Tavoularis & Corrsin ( 1981) measured 
several moments, spectra, lengthscales, timescales and probability density functions 
in nearly homogeneous turbulent flow with a uniform mean temperature gradient to 
study detailed behaviour of thermal turbulence under the influence of the uniform 
velocity gradient. With the data from Sirivat & Warhaft (1983), Shih & Lumley 
(1986) have recently formulated a return-to-isotropy model ‘constant ’ $, appearing 
in a scalar flux equation Q. 

An experiment on the triple product between velocity and temperature __ (or the 
third-order scalar transport terms), for example w, ui ui 8 and uj 02, has been 
carried out by Fabris (1983) who obtained data of all scalar transport terms in a two- 
dimensional turbulent wake behind a heated circular bar whose diameter was 
0.6 mm. Dekeyser & Launder (1985) measured all the scalar transport terms in a 
heated asymmetric two-dimensional turbulent jet. In  addition to the presentation of 
the data, they carried out numerical tests of currently available gradient-diffusion 
type models for the scalar triple products against their data. As a result, they showed 
that the simple gradient-diffusion model cannot consistently predict the scalar triple 
products in the whole downstream range of measurement, and they suggested that 
a theoretical model of Lumley (1978) for the scalar transport terms would be worth 
examining to see if such an extensive, but highly complicated, model would give a 
better prediction. Raupach & Legg (1983) obtained quite complete turbulence 
correlations of first-, second- and third-orders behind an elevated line heat source in 
a turbulent boundary layer. In  the same work, currently available closure 
assumptions for various moments were tested against the experiment. Their findings 
are that:  (i) the gradient-diffusion model at the first-order predicts correctly the 
turbulent heat flux correlations q, (ii) the turbulence-interaction component of 
the pressure term requires different timescales for and ;;8 correlations, and (iii) the 
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triple products are not well represented by current simple gradient-diffusion models. 
Unlike the simple gradient-diffusion model (Launder 1978), Zeman & Lumley (1979) 
and Lumley (1978) have formulated a system of linear equations for nine scalar triple 
products as unknowns. The coefficient matrix consists of second-order moments and 
the mean temperature gradient and the elements of the column matrix in the right- 
hand side are gradients of the second-order moments. 

The objectives of the present paper are to study the evolution process of the 
turbulent thermal structure behind a fine cylindrical heat source in a uniform shear 
flow and to test the various computational models for the third-order scalar 
transports. With this in mind, mean field characteristics and higher-order statistical 
moments are measured in the turbulence field behind the cylindrical heat source in 
a grid-generated turbulence of uniform mean shear. The experimental details are 
given in the following section. It is believed that the present experiment is a logical 
addition to the series of previous experimental works on thermal turbulence. 

2. Experimental facilities and instrumentation 
2.1. Wind tunnel of uniform mean shear and a fine cylindrical heat source 

An open-return wind tunnel, 0.6 m x 0.6 m in cross-section and of effective working 
section 8 m long, was specially designed for this study from the design guide of Mehta 
& Bradshaw (1979). The wind tunnel was driven by a forward facing multiblade fan 
powered by a variable speed 15 h.p. motor. The contraction ratio was 9:  1 and the 
maximum attainable speed was 25 m/s with a turbulence intensity of less than 
0.3 %. I n  order to restore the static pressure loss due to friction, both sidewalls of the 
duct were adjusted a t  a diffusing angle of about 0.3" for a mean speed of 10 m/s. The 
contraction nozzle was formed by two cubic arcs and the exit part of the nozzle was 
carefully trimmed. 

The configuration of the shear generator is such that the channel is vertically 
divided by 14 thin steel plates equally spaced in order to have 15 narrow channels. 
Two perforated steel bands with equally spaced rectangular holes are folded together 
at the upstream entrance of each channel. By sliding one steel band over the other, 
the opening area ratio can be adjusted easily between 0.288 and 0.70. In  order to 
decrease the scale of turbulence at  the exit of the shear generator, which is of the 
order of the channel height 4 cm, a cylindrical rod of diameter 8 mm was installed at 
the centre of each channel exit. Such an arrangement also helps to obtain better 
horizontal uniformity of the flow. The uniformity of the shear rate across the test 
section was tested with a vertically oriented rake of 26 dynamic pressure probes 
made of 2.12 mm diameter stainless steel tubes. In  order to minimize the flow 
disturbance due to the probes the vertical distances between the probes were set at 
2 cm, and the distance between the probe hole and the back stem of the rake was 50 
tube diameters (Pope & Harper 1966). 

The total pressure signals from the rake and the static pressure signals from wall 
pressure taps at the same distance x were scanned by a Scanivalve system which 
consists of a pressure transducer, J-type Scannivalve (SCANCO) and a solenoid 
controller. Fine adjustment of the shear generator was performed by measuring the 
local velocity with a single hot-wire probe of platinum-coated tungsten 1.2 mm long 
and 5 pm diameter. The probe was vertically scanned with a precision traversing 
mechanism driven by a stepper motor whose movement was controlled by pulse 
signals from a microcomputer (Commodore PET 4032). The minimum stepping 
increment was 0.125 mm. A fine stainless steel screen with a square mesh of 1.06 mm 
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FIQUKE 1 .  Arrangement of a shear generator, fine screen and a heat source in a low-speed 
wind tunnel. 

and solidity of 19% was inserted into the wind tunnel a t  x / H  = 4 (here, H = 0.6 m 
is the height of the test section) downstream of the shear generator exit to  further 
reduce the free-stream turbulence and to obtain more uniform shear flow. 

As a heat source, a 0.8 mm diameter Ni%r wire was stretched horizontally across 
the test section a t  x / H  = 7 and at the centre of the channel height. The wire was 
heated electrically with an a.c. supply and the power consumption was monitored by 
a precision wattmeter. Variation of the power consumption during the experiment 
was within 2%. The temperature of the incoming air to the heating wire was 
21.5k0.2 'C. Sagging of the wire owing to wire heating was prevented by giving 
tension force through the wire by suspending a weight of 1 kg a t  one end of it. The 
wire was supported by a pair of Duralumin junctions at both ends. Figure 1 shows 
the experimental configuration and the front view of the shear generator. 

2.2. Instrumentation and data acquisition 
The streamwise and vertical velocity components and the fluctuation temperature 
were simultaneously measured by a combination of a constant temperature X-wire 
probe (TSI, model 1241) and a cold wire. The X-wire was made of platinum wire of 
diameter 6 p m  and length 1.25mm. The wire overheat ratio was 2.0 and the 
frequency response was set at 15 kHz. The probe was calibrated with the Collis and 
William's law, and yaw tested which gave 

The cold wire for the fluctuating temperature measurements was 0.6 pm platinum 
Wollaston wire and its effective length was 0.3 mm ( l l d  = 500). It was operated as 
a resistance thermometer in a constant current circuit of 120 A. The frequency 
response of the cold wire was 6 kHz which was determined by using a pulsed two-wire 
technique described in Antonia, Browne & Chambers (1981). The resistance- 
temperature coefficient a was measured to be a = 0.0035+0.0001/K which is the 
same as LaRue, Deaton & Gibson (1975). 

The cold wire was vertically oriented and located 2 mm laterally away from the X- 
probe. Since the flow has a fluctuating temperature component, the signals from the 
X-probe were contaminated by the temperature. The two signals were separated by 
using a method which is described in Subramanian (1980) and Subramanian & 
Antonia (1981). The cold-wire signal was amplified with a gain of i04-105 and then 
low-pass filtered at 10 kHz cut-off. The r.m.s. noise of the cold-wire signal was 

= 42.3' and e2 = 45.8'. 
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0.05 K and the smallest detectable temperature variation was 0.005 K. All signals 
were recorded on an FM magnetic tape recorder (HP model 39688, frequency 
response of 5 kHz) and subsequently digitized by a universal waveform analyser 
(Data Precision, D-6000). The A/D conversion was done with 14-bit resolution at  
10 kHz sampling. 

The lateral resolution of our combination probe is about three times larger than 
the Kolmogorov’s microscale, owing to the 2 mm gap between the cold wire and the 
hot wire. The probe is thus inappropriate for the investigation of small-scale 
turbulence. However, it is sufficiently small for the measurement of the cross- 
correlation between the velocity and the temperature which is related to  the large- 
scale turbulence whose lengthscale is about 40 mm, as described in the following 
section. 

2.3. Experimental conditions and characteristic scales 
The wire was heated at two different heating rates. The heat released from the line 
heat source is partly lost to the surroundings by radiation from the wire and by heat 
conduction through the Duralumin junctions. Considering such heat losses, the 
effective heating rates were estimated to be about 267 W/m and 537W/m 
(hereinafter, referred to as low heating and high heating, respectively). 

For these cases, the ratios of vertical buoyant velocity to the convective velocity 
were approximately 3 x and 4 x lop3 under low and high heatings, respectively. 
These values indicate that the buoyancy effect on the thermal evolution process 
downstream is negligible as has been assumed in most previous experiments for 
thermal evolution in a turbulent boundary layer. 

Mean velocity distributions across the test section a t  the wire location with and 
without the heating wire are shown in figure 2. The solid line represents the mean 
velocity profiles in the wind tunnel without the line heat source. The velocity 
distribution without the heating wire exhibits a very good uniform shear field. The 
portion of the uniform shear in the measuring section is about 70% of the test- 
section height. The upper 20% and the lower 10% of the test section are wall 
boundary-layer regions. Since the ‘wire diameter is not small enough, there is an 
appreciable mean velocity wake behind the line heat source as can be seen in figure 
2. It was found that such velocity wake patterns virtually disappear a t  a downstream 
distance equivalent to a convective lengthscale L, from the source. This will be 
mentioned below. 

Since the timescale of the large eddy motion in the wind tunnel is imposed by the 
mean strain rate S of 3.38 s-l, the imposed timescale $m is 0.296 s. An imposed 
convective lengthscale is then determined by a relation L, = U, Km where U, is the 
centreline mean velocity of 7.85 m/s, hence, L, = 2.32 m. The integral timescale a t  
the source position, Yo, is estimated to be about 5.92ms by integrating the 
autocorrelation curve up to the zero-crossing. The integral lengthscale is then 
1, = U, To = 4.65 em. Usually, the mean and r.m.s. temperature profiles are scaled by 
the peak temperature Tp of the mean temperature profile a t  the downstream station 
and the vertical distance y is scaled by the half-width of the mean temperature profile 
L,. Accordingly, in the following sections, unless otherwise specified, the vertical 
distance is normalized by Lo, the downstream distance by L,, the mean and r.m.s. 
temperature by Tp and the quantity of time dimension is scaled by the imposed 
timescale Km. 

Before presenting our results, it may be necessary to discuss the effect of vortex 
shedding on the temperature field due to the existence of the wire of finite size. 
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FIGURE 2. Streamwise mean velocity distributions in the range of measurements with and without 
the heat source. Symbols are mean velocity data with the heating wire: 0, z = 320 mm; a, 
z = 720 mm ; 0, z = 1320 mm; 0,  x = 1910 mm. The straight line represents the mean velocity 
profile a t  the source position without the wire. 

Among previous similar experiments of thermal dispersion from a line heat source, 
the unheated wire Reynolds number of Raupach & Legg (1983) was 450, those of 
Warhaft (1984) were 38, 175 and 280 and Stapountzis et al. (1986) performed their 
experiments for Re = 42 and 207. The latter has additionally studied the effect of the 
vortex shedding on the thermal evolution. They found that the vortex street after a 
thicker wire (d, = 0.7 mm) produces a lower peak mean temperature and higher 
r.m.s. temperature fluctuations in the range of x/M < 1 or x < 30d,, where d, is the 
wire diameter. 

Still further downstream, however, both distributions were found to be 
indistinguishable compared to those from a thinner wire. Warhaft (1984) also 
checked the dependence of the evolution of 6 on the wire diameter with three 
different wires whose unheated Reynolds number varied from 39 to 280. The result 
showed that there was virtually no difference in the mean temperature and r.m.s. 
temperature profiles in x/M > 8. Such experimental evidences are supported by a 
recent analysis of Sawford and Hunt (1986), who showed that the source size 
dependence occurs only when the wire diameter is much larger than the 
Kolmogorov’s lengthscale (d, 4 7). 

During our preliminary experiment with Re = 380, it  was found that wavy 
velocity signals at about 2 kHz (=  0.2 UJd,) which is the vortex shedding frequency 
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FIGURE 3. Vertical distributions of mean temperature at various downstream positions. 
Symbols as in figure 2. 

(Stapountizis et al. 1986) completely disappeared a t  100 mm (or 125d,) downstream 
from the wire. 

The Kolmogorov’s microscale in our uniform shear flow was about 0.6 mm, thus 
d ,  - 9 .  Considering all these facts, it may be concluded that the thermal field in the 
measurement range of this experiment z / M  > 9, whereM is roughly equivalent to the 
channel width of the shear generator, was not influenced by the vortex shedding. 

The extent of the influence of the uniform shear on the turbulence structure a t  a 
point of measurement is represented by the dimensionless flow development time 
7 E (x/U,) (dU/dy). In previous velocity field measurements in the homogeneous 
shear flow in a wind tunnel, the values were 3.6 (Champagne, Harris & Corrsin 1970), 
13 (Harris, Graham & Corrsin 1977) and up to 25 (Rohr et al. 1988). In  our 
preliminary experiments, it was found that if the strain rate is large, the range of the 
homogeneous shear field across the flowing area diminishes. Since the thermal field 
evolves laterally, our measurements were limited up to x = 1910 mm downstream 
from the heat source under the present strain rate in order to guarantee the thermal 
dispersion well within the homogeneous shear field. This point corresponds to 
r = 0.82 which is very low compared to r = 4, a lower limit for the given shear rate 
to affect the turbulence field (Rohr et al. 1988). Therefore, the effects of shear are not 
likely to be dominating in the present measurements. 

3. Results and discussions 
3.1. Mean temperature and r.m.5. temperature proJiles 

The mean temperature profiles normalized by the temperature half-width L, and the 
peak temperature T p  of the profile are shown in figure 3. 

As can be seen in this figure, the profiles are not Gaussian and their centres shift 
gradually downward along the downstream distance. Scaling the y distance by the 
temperature half-widths L, makes the centre positions of the profiles coincide with 
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0.155 0.310 

Peak temperature T , ( O C )  1.721358 1.0312.05 
Half width, L,(mm) 17.01 16.0 26.5127.5 

Mean displacement, g(mm) -4.051-3.69 -5.751 -4.92 
Mean dispersion (mm) 5.7217.22 10.3/12.0 

Flatness 2.7812.91 2.9312.88 

Downward shift, 8,(mm) -4.51-4.0 -6.01-5.5 

Skewness -0.1321 -0.018 -0.185/0.049 

0.569 

0.7211.35 
41.0142.5 

-7.71 -7.5 
-7.421 -6.73 

-0.025/0.035 
16.2117.9 

2.8112.71 

~ 

0.823 

0.501 1.10 
54.2156 .0 

- 10.01 -9.5 
-8.661-8.15 
20.4124.6 
0.084/0.064 
2.7912.82 

Lagrangian scalings 
Distance, XIL, 0.46610.358 0.93110.719 1.71/1.31 2.4711.90 
Peak temperature, TplO, 0.61410.834 0.36810.477 0.25710.31 5 0.179/0.256 
Dispersion, ((y - g)2)z/lL 0.57210.554 1.03/0.921 1.6211.37 2.0411.89 

TABLE 1 .  Evolution characteristics of mean temperature field (low heatinglhigh heating) 

each other. The mean temperature profiles qv, can be statistically characterized by 
the various centroid-centred moments 

I roo 

where y is the first moment of the mean temperature profile 

Since l&, is approximately equal to the probability that a particle from the source 
can be found at the point (z,y) (Shlien & Corrsin 1976), the first moment g is 
approximately equal to the mean particle displacment normal to the mean flow 
direction, and the second centroid-centred moment is equal to the mean vertical 
dispersion of the particles. 

Properties of the mean temperature profiles a t  various downstream positions 
under two heating rates are tabulated in table 1.  Comparing the downward shift of 
the peak temperature, a,, and computed mean displacement gj in figure 4, it can be 
seen that the mean displacement tj is smaller in magnitude by about 8%, but the 
trend is almost the same as the downward shift of the peak temperature 8,. The 
temperature half-width L,  increases almost linearly with the downstream distance 
but the mean dispersion ( ( Y - Y ) ~ ) ~  is proportional to the square root of the distance 
from a virtual origin of the heat source; i.e. D2 - (2-xo).  For high heating, the 
dispersion is larger and the mean downward displacement is smaller than for low 
heating, as was expected. The skewnesses of the mean temperature profiles in figure 
3 are tabulated in table 1. The skewness first has a negative value and then changes 
sign to a certain positive value downstream. It changes to positive values earlier for 
high heating than for low heating. This may be attributable to the stronger buoyancy 
effect of high heating. Shlien & Corrsin (1976) measured a dispersion field from a line 
heat source in a turbulent boundary layer parallel to, and located at ,  various vertical 
distances from the bottom wall. According to their observation, downstream 
variation of the skewness of the mean temperature profiles for cases when the linc 
heat source was located a t  y = 4.16Sd, where S, is the displacement boundary-layer 
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FIGURE 4. Downstream developments of mean temperature half width L,,/d, mean dispersion 
( (y-g) ' ) ; /d ,  mean displacement g ld ,  downward shift of the peak temperature 6Jd and the decay 
of peak temperature T,, where d is the diameter of the heating wire (d = 0.8 mm). 

thickness, exhibits the same tendency as in the present study. It may be reasoned 
that, at first, the passive scalar disperses more downward owing to wind shear, but, 
the thermally stable stratification in the lower part of the thermal wake begins to 
suppress the downward dispersion in the lower part and the thermally unstable one 
in the upper part causes more spread in the upper tail of the temperature profile. 

The kurtosis (or flatness factor) of the mean temperature profiles are also tabulated 
in table 1. Although a few numerical values of the kurtosis are not satisfactory, it can 
be noted that the mean temperature profile is more Gaussian near the source and 
that the profile tends to be flatter with the downstream distance. 

In  order to compare the present experimental data with other data on the scalar 
dispersion from an elevated line heat source in a turbulent boundary layer, 
Lagrangian scales (Dupont, Kabiri & Paranthoen 1985) are employed to  non- 
dimensionalize the peak temperature Tp and the mean dispersion ((y - jj)')i. The 
Lagrangian temporal integral scale is calculated by the experimental data on the 
mean dispersion. The results for low and high heatings are tabulated in table 1 with 
pertinent length and temperature scales. Figure 5 shows the decay of the peak 
temperature and the downstream evolution of the mean dispersion. Even though the 
mean velocity field near the source wire in a turbulent boundary layer is not of nearly 
uniform shear in many experiments cited above, i t  is noted that our dispersion data 
correlate well with others in turbulent boundary layers as can be seen in the figure. 

The vertical distributions of r.m.s. temperature fluctuations 8' normalized by the 
peak temperature Tp a t  various downstream distances are shown in figure 6. The solid 
line is obtained by fitting a Gaussian profile with the same dispersion as the data. The 
6'-distribution has no pronounced double peaks a t  all X positions over the range of 
measurement. The appearance of a double peak has been observed and explained by 
Warhaft (1984) and also theoretically predicted by Stapountzis et al. (1986). Both 
these previous studies show that the double peak disappears a t  about x/M - 2 where 
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FIQURE 5. Comparisons between the present data and other experiments on the streamwise 
evolutions of peak temperature and the mean dispersion. Solid symbols are present data: 0 ,  low 
heating ; m, high heating. Open symbols are other data in turbulent boundary-layer experiments 
collected by Dupont et al. (1985). Solid lines are smooth-curve fits to these data. 
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FIQURE 6. Root mean square temperature profiles at various downstream distances. Symbols are 
as in figure 2. The solid line is a Gaussian curve fit to the data with the same standard deviation 
as the data. 

M is the mesh size of the grid. However, Warhaft (1984) observed re-emergence of the 
double peak at x/M = 63 and 133. Since our integral lengthscale 1, is approximately 
equivalent to M ,  our measurement range is in a range 12 < x /M < 41. Close 
examination of the original data of figure 6 confirms a tendency €or such a double 
peak to appear again far downstream. The ratio of maximum 8' to the peak 
temperature Tp in unsheared grid turbulence was reported to be about 0.7 in Warhaft 
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FIGURE 7. Comparisons between present data and data in grid turbulence (Warhaft 1984) on 
normalized half-widths of the mean temperature profiles (left-hand curve, L,) and r.m.s. 
temperature profiles (right-hand curve, y*). Solid symbols, present data. Open symbols, Warhaft 
(1984). The dmhed line is the prediction of Anand & Pope (1985). 

(1984) and 0.6 in Stapountzis et al. (1986), but in our case the ratio is about 0.42. 
Considering the value of 0.27 obtained by Fabris (1979) who used a thicker cylinder 
of diameter 6.2 mm, such a difference in the ratio is due to the source wire size; the 
ratio becomes larger for smaller wire size. The downstream developments of the half- 
widths of the mean and the r.m.s. 8' profiles are shown in figure 7. Following the 
proposal of Anand & Pope (1985), the half-widths of the profiles have been 
normalized by the integral scale I ,  at the location of the heat source and the distances 
downstream from the source have been normalized by the distance of the source from 
the screen X,. The collapse of our data to the curves formed by the data of Warhaft 
(1984) is remarkable. According to the present data and those of Warhaft (1984), the 
r.m.s. 0' profile has a wider half-width than that of the mean temperature profile; 
however, the data of Stapountzis et al. (1986) shows the reverse. More experimental 
observation is necessary to clarify such a discrepancy. 

3.2. Turbulent Reynolds shear stresses a d  heat jluxes; and 

The r.m.s. values of streamwise and vertical velocity fluctuations u' and v' are 
normalized by the centreline mean velocity U, a t  the source and are shown in figures 
8 ( a )  and 8 ( b ) .  

Compared with the wake pattern in the mean velocity profile, the wake of the 
turbulent fluctuations persists comparatively longer owing to the production of 
the turbulent kinetic energy by an amount -mdU/dy. This is consistent with the 
observations by Shlien & Corrsin (1976) and Champagne et al. (1970). In  comparison 
with the persistence of the wake property of the measurement of Raupach & Legg 
(1983) in a turbulent boundary layer, the restoration to the free-stream condition is 
rather slower in the present experiment. In  the usual two-dimensional wake behind 
a cylinder, u'-distribution has two peaks a t  both sides of the wake even in the self- 
preservation region (Townsend 1976). In  our case, since the two peaks of u'-profile 
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FIGURE 8. Distributions of component intensities and Reynolds shear stresses : (a) u‘/Uc, (6) v’/CTc, 
(c) ~ / q .  Symbols as in figure 2. The dashed line in (c) represents the Reynolds shear stress of the 
free stream (outside of the velocity wake). 

formed in the initial stage of evolution are exposed to  two differently straining field, 
i.e. locally high shear in the upper part and locally low shear in the lower part, the 
bulge of the u’-value in the upper part and the shrinkage in the lower part together 
make the u’-profile merge into the u’-profile of a single peak. The v’-distribution in 
figure 8 ( b )  has a similar structure to that of the u’-distribution. The profile skews in 
the lower half and the peak position tends to shift upward. Both the u’- and v’-values 
at the centreline approach the free-stream values far downstream. Distributions of 
the mean Reynolds shear stress m are shown in figure 8 ( c ) .  They are similar in shape 
to the plane wakes and jets (Townsend 1976). It appears that  the profile is a 
superposition of the plane wake onto the homogeneous uniform shear flow with 
gradual downward shift. It is not clear how to identify the measure of downward 
shift of the dynamic field. The point of maximum mean velocity defect almost 
coincides with the point of zero crossing of the m-profile. At far downstream, 
however, the m-profile does not cross the zero level. But, it is noted that the points 
of the free-stream value of m collapse nearly on a single point when the y-distance 
is scaled by L,. Therefore, the point a t  which zv has the same value as that of the free 
stream is considered to be an appropriate measure of the downward deflection of the 
dynamic field. 

Figure 9 (a) shows the profile of the vertical heat flux 8. The downward deflection 
of thermal field a t  each measurement position may be measured by the zero crossing 
point which is almost coincident with the point of the peak temperature 1;. The 8 
profile shape is antisymmetrical with the peak value in the lower part a little smaller. 
This implies that  the vertical heat flux upward is larger than that in the downward 
direction. The weakness of the mean shear effect on 3 is due to the fact that 
production term in the 3 equation does not contain the mean shear or the Reynolds 
shear stress m. The overall shape of 8 is very similar to that in a plane heated wake 
by Fabris (1979) ; the mean shear has a small effect on the 3 profile only indirectly. 

In  contrast to the a-profile, the streamwise heat flux a shown in figure 9 ( b )  has 
a strong effect on the mean shear. One of the production terms in the governing 
equation for ;;18 is - a d U / d y  whose magnitude is of significant size throughout the 
field of measurement. The higher value in the upper part is due to the larger value 
of 3 and larger local mean velocity gradient there. Note that ;;18 has negative sign 
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FIGURE 9. Turbulent heat flux distributions. (a) a/U,T,. Streamwise &at flux: -, 
x/L, = 0.155; -.-, x/L,  = 0.31; ---, x/L,  = 0.569; --, x/L,  = 0.823. (b) u@/U,T,. Vertical 
heat flux ; symbols as in figure 2. 
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FIGURE 10. Distributions of normalized timescales. (a) Velocity timescales, FITi,,,, 

(b) temperature timescale, To/Fim. Symbols as in figure 2. 

in the whole field, as in the plane heated wake (Fabris 1979). However, in a dispersion 
measurement in a turbulent boundary layer (Raupach & Legg 1983), a changes sign 
from negative to  positive at the heat source height. The ratio between the vertical 
heat flux a and the horizontal heat flux a near the peak positions of 3 is roughly 
3, which is consistent with Monin & Yaglom (1971, p. 522). 

3.3. Integral timescales, dissipations and anisotropy 
The integral timescale variation of velocity 9 and temperature Yo are depicted in 
figure 10(a,  b ) .  The timescale was obtained by integrating the auto-correlation curve 
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FIGURE 1 1. Timescale ratios between temperature and velocity, R = Y#/F. 
Symbols as in figure 2. 

up to the zero crossing point (Champagne et al. 1970). Owing to the velocity wake, 
the velocity timescale varies significantly in the range of the experiment, whereas the 
temperature timescale increases very slowly along the downstream distance. There 
are double peaks in the Y, profiles which are roughly coincident with the positions 
of maximum slope of the 8' profile (see figure 6). The integral timescale ratio 
R( = 9JY) a t  the edge of the wake profile is about 0.3 and within the wake region 
it varies between 0.5 and 1.3 (figure 11). It decreases with the downstream distance 
with the maximum in the lower part. The higher value in the lower part is 
attributable to the downward shift of the larger thermal mass. 

The rate of kinetic energy dissipation B and the destruction of temperature 
variance B, which are non-dimensionalized by local scales are obtained as in figure 12. 
The rate of dissipation was evaluated by the following inviscid estimates (Tennekes 
& Lumley 1972), 

Likewise E ,  has been estimated as 

- -  
E = ((U2+V2)/2)f/l, 1 = 9-u. 

- 
E ,  = 02/1,, 1, = Y O U .  

It is seen that both E and E ,  have maximum values in the centre region and that E 
decreases much faster than e, along the downstream distance. Figure 13 shows the 
decay of anisotropies I1 and 11, and the variation of the timescale ratio R along the 
centreline. The anisotropy I1 is defined by I1 = bij b, where b ,  = ~ / ~ ~ 1 / 3 8 i j .  
The scalar flux anisotropy 11, is defined by 11, = fi fi where fi = g / ( q 2 0 2 ) u  and 

= ii&. It is shown that the anisotropies I1 and 11, both relax to the isotropic state 
a t  almost the same rate. The timescale ratio R approaches about 0.5 a t  far 
downstream. 
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FIGURE 12. Variations of isotropic dissipation profiles and the destruction rate of temperature 
variance. (a) F;:), rate of isotropic dissipation, ( b )  e o / ( q F ; i ) ,  destruction rate of 
temperature variance. Lines as in figure 9. 
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FIGURE 13. Downstream variations of anisotropies IT and 11, and the timescale ratio. 

3.4. Third-order scalar transport terms 
Modelling the turbulent third-order scalar transport terms in dynamic equations of 
second-order moments such as kinematic heat fluxes 8 and 3, Reynolds stress GB 
and temperature variance @ are of fundamental importance in predicting many 
engineering and geophysical dispersions of heat, moisture or pollutants. The purpose 
in this section is to test three different models for representing the spatial transports 
ofm, u0, v0 and in non-isothermal turbulent flows with the present measurements. 

_ _  
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One of the simplest ones is the simple gradient transport model. Specifically, for 
boundary-layer flows, they are as follows (Launder 1978) : 

where 73 is an appropriate timescale for the third-order moments. It has often 
been asserted that the timescale 73 may be substituted by the dynamic timescale 
T,( = F / E ) .  Conventionally, the following form has been used, 

r3 = 0.0552/s. 

This is possible only if one assumes that the thermal timescale ro( = @/e,) is almost 
proportional t,o 7,. However, since the timescale ratio R has been proved to vary in 
the range of 0.3 < R < 1.3, such an assumption is not adequate. Recently, Chung & 
Kyong (1986) have proposed a composite timescale in the form of a simple weighted 
algebraic mean between T,  and 7# to be used for r3 in conjunction with the simple 
gradient transport model in the following form, 

r3 = 0.0557,(1 +bro/r,). 

The constant b is assumed to  depend on the power of temperature fluctuations 0 in 
- the moments: namely, b = 0 for u2v, uv2 and 3, b = 1 for a and 2 8 ,  and b = 2 for 
UP. This model reflects the fact that  a larger contribution comes from the thermal 
timescale for higher powers of fluctuating temperature 0 in the triple moments. 

For a horizontally homogeneous atmospheric boundary layer under buoyancy 
effects, Zeman & Lumley (1979) explicitly expressed the third-order moments in 
terms of various turbulence timescales, the Brunt-Vaisala frequency and gradients 
of the second-order quantities in a tensorial form. This model has been tested in 
Chung & Kyong (1986) and it  was found that the model overpredicts most third- 
order moments. Under further assumptions of weak inhomogeneity in temperature 
and negligible buoyancy effect, Lumley (1978) has presented a closed set of linear 
equations for u,e2, uiuj8 and iqiq& as follows: 

-- 

-- 

~- 
~ ~ t ~ + 2 ( u j e ) , k u k e  = -Z(C0/e") [I +Co(C/q2) (e ' /qJ] ip ,  

(iip),$qq+ ( q q t = +  (qqk% 

(wq, p UkUp + (uiulc), p uiup + (-1, p uiup 

- -  
= -[Cl(C/@) ( ~ ~ ~ ~ 8 - q ~ 8 6 , ~ / 3 ) +  (2E/3@) q 2 8 d 6 j + 2 2 c o ( F / @ ) ~ ] ,  

- 
= -3C1(F/@) [Ep jq -  (i) (Sijg2U,+Sikq2Uj+dij&)] 

- ( 2 q 3 @ )  (& & + Sit& + Sit fi). 
In the following discussions, model predictions by the above simple gradient 
transport model with the dynamic timescale for r3,  and that with our new composite 
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FIGURE 14. Comparison of model predictions with data  of uv"/u3 where ua = &- at various 
downstream distances. Prediction : -, present composite timescale model. Symbols as in 
figure 2. 

timescale for r3 and Lumley's model are compared, together with the present 
experimental data. All predictions are computed with the directly measured values. 
In the following figures, symbols represent our data, the solid line is the predicted 
profile by our composite timescale model, the dotted line by Lumley's (1978) model 
and the dashed line by the conventional simple gradient transport model. 

Figure 14 shows the comparison of predictions with the data of m2, the streamwise 
transport of 3 or vertical transport ofm. (Here, Lumley's model was not tested owing 
to lack of data on transverse velocity fluctuations w.) The gradient of mz appears as 
a turbulent diffusion term in the governing equation of Reynolds stress. Note that 
the zero-crossing point of the m-profile nearly coincides with the plus peak positions 
of the m2-profiles, which means that the turbulent diffusion of WD is negligible a t  the 
zero-crossing point. The profile is similar to that of a heated plane wake of Fabris 
(1983). The vertical position of the positive peak in the lower part nearly coincides 
with the maximum velocity wake also. This is in contrast with the heated plane jet 
where m2 is negative in the central part and becomes positive in the outer free mixing 
zone (Dekeyser & Launder 1985). The simple gradient transport model predicts 
mz fairly well. The abnormal variations of the predicted profiles a t  both peaks at  
x/L,  = 0.32 are due to scatter of experimental data of second-order moments. 

Figure 15 shows the profile of uv8, the streamwise transport of 3. The profile is 
similar to that in the dispersion measurement from a line heat source in a turbulent 
boundary layer (Raupach & Legg 1983) except near the wall layer. I n  the heated 
plane wake of Fabris (1983), uv8 vanishes a t  the wake centre and changes sign from 
positive to negative along the outward direction. In our case and in the turbulent 
boundary layer, uv8 does not vanish at the thermal jet centre. Predictions are fairly 
reasonable except for the simple gradient model which underpredicts uv8 in the 
whole region by a factor of about 2. 

Figure 16 represents the streamwise transport of 2, i.e. a-profiles.  The profiles 
are everywhere positive in the upper and lower parts, which is different from the 
heated jet (Dekeyser & Launder 1985) where it has smaller negative value in the 
central region. It is noted that predictions by the present model are of the same 
magnitude as those by Lumley's model. All model predictions are low compared with 

7 FLM 205 
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FIGURE 15. Comparison of model predictions with data of uv8/e2T,. Predictions: -, present 
composite timescale model ; -.-, simple gradient model; ---, Lumley’s (1978) linear algebraic 
equation model. Symbols as in figure 9. 
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FIGURE 16. Comparison of model predictions with data of u18/e2T,. Lines and symbols as in 
figure 15. 

the data, which may imply that the timescale for the streamwise transport should be 
different from that for vertical transport. 

The vertical transport of the vertical heat flux, v28, is represented in figure 17 (a,  b )  
for low heating and for high heating, respectively. The vertical gradient of is 
the turbulent diffusion term in the boundary-layer-type governing equation of 3. 
Two zero crossings are located near the peaks of 8 and the negative peaks coincide 
with the zero crossings o f 8 .  This means that the diffusion o f 8  by turbulent vertical 
fluctuations is strongest at the peaks of 8 since the maximum slopes of v28 are near 
these points, and the diffusion of 2 by vertical fluctuations is negligible a t  the zero 
crossing of 8. The profiles are similar to the heated plane wake but with downward 
shift of the profile. The same trend can also be seen in Raupach & Legg (1983) and 
Dekeyser & Launder (1985). The predictions by the simple gradient-transport model 
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FIGURE 17. Comparisons of model predictions with data of m/u2T,; (a )  low heating, 
( h )  high heating. Lines and symbols as in figure 15. 

and Lumley’s model are fairly good, but our model overpredicts the negative peak 
region of the profile. Such over-predictions are not serious in the case of high heating 
as can be seen in figure 17 ( 6 ) .  

In  figure 18 profiles of 3, the streamwise transport of @, are presented. u82 
remains negative in the whole region with two peaks on both sides. I n  the heated 
plane wake of Fabris (1983),  the u82 which is slightly positive near the centre 
becomes highly negative in the outer free mixing region. But, in the heated plane jet 
of Dekeyser & Launder (1985),  the u82-profile is highly negative in all the upper part 
of the jet but with some peak positive value in a narrow region of the lower part. 
Only Lumley’s model predicts the u82 level reasonably in the upper field, but, the 
simple gradient model under-predicts u82 in the whole field. This again may imply 
that the streamwise transport of e2 must have a different timescale from other 
vertical transports. 

Finally figure 19(a) and 19(b)  show the profiles of v82, the vertical transport of the 
temperature variance for low heating and high heating, respectively. It is noted that 

7-2 
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FIGURE 18. Comparison of model predictions with data of u82/aT:. Lines and symbols as in 
figure 15. 
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FIGURE 19. Comparisons of model predictions with data of v82/aT2,; (a )  low heating, 
( b )  high heating. Lines and symbols as in figure 15. 
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the profiles are nearly anti-symmetric with respect to the centre position of the @ 
profiles. The peak values in the centre region are much smaller than those in the outer 
edge regions, which is consistent with Fabris’ (1983) data of @ in the plane heated 
wake and with Raupach & Legg’s (1983) in a turbulent boundary layer. In  the high 
heating case of figure 19(b) the profiles are nearly flat in the centre region. Model 
predictions by the present composite timescale model are of the same degree of 
accuracy as those by Lumley’s model, whereas, the conventional simple gradient 
transport model yields under-predictions by about 50 YO in all cases. 

Considering the overall performance of the three models for all the triple moments 
in this section, it may be concluded that our model, which employs a composite 
timescale for the simple gradient transport model, yields the best overall predictions 
with no additional cost. 

4. Conclusions 
The paper has presented an experimental investigation on the turbulent dispersion 

of passive temperature behind a fine cylindrical heat source in a homogeneous 
uniform shear flow. The purpose of presenting this work is mainly to  provide 
valuable basic data for assessment of the currently available third-order transport 
models. However, since the experiment has its own merit in that the effect of the 
uniform mean shear on the dispersion of the passive scalar can be investigated by 
analysing the data presented herein, the data of scalar dispersion field and various 
second-order moments have been analysed at some length in the first part of 
the paper. It was found that the vertical profiles of the mean temperature and the 
r.m.s. temperature both exhibit nearly Gaussian distributions except for a little 
degradation in the centre region of the r.m.s. temperature profile. The mean 
temperature data a t  different downstream distances can well be collapsed onto a 
simple Gaussian curve with reasonable scatter when they are normalized by the local 
peak mean temperature and the local temperature half-width. The same argument 
can be made for the data of r.m.s. .temperature profiles. 

When the peak temperature, the mean dispersion of the temperature field and the 
downstream distance are normalized by respective Lagrangian scales proposed by 
Dupont et al. (19851, the peak temperatures and the mean dispersions are well 
correlated with other data in turbulent boundary layers reported by various authors. 
A problem, however, in utilizing such Lagrangian scaling is that the Lagrangian 
integral timescale must be computed from experimental data of the mean scalar 
dispersion ((y-g)*) which can not be known a priori. 

When the evolution of the scalar field is analysed, Anand & Pope’s scalings were 
used. The downstream distance was normalized by the distance between the screen 
and the line heat source and the half-widths were normalized by the streamwise 
integral lengthscale a t  the source. Such scaling also permitted nice collapse of the 
present data of the growth of the half-widths onto a single line obtained by the data 
of Warhaft (1984) and Staupontzis et al. (1986). Present data on various second-order 
moments have been investigated compared to the data in a plane heated wake, plane 
heated jet and a turbulent boundary layer. 

Profiles for statistical moments of velocity fluctuations and rate of dissipation 
change appreciably with the downstream distance owing to the presence of the wake 
structure. However, the thermal statistics change slowly with the downstream 
distance. It has been noted that the streamwise heat flux 3 normalized by local 
scales remain the same with the downstream distance. The timescale ratio between 
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temperature and velocity fluctuations varies between 0.3 and 1.3 across the stream 
and it asymptotes to a value of 0.5 a t  far downstream. 

Finally, data of the third-order velocity-temperature correlations were analysed 
by three different second-order models ; namely, a simple gradient transport model 
with a conventional dynamic timescale, and that with a simple composite timescale 
between dynamic and thermal timescales and an extensive mathematical model by 
Lumley (1978). 

As a result of the model predictions, i t  was found that all models considered here 
provide the correct trend for the profiles, but, with different levels of accuracy. The 
simple gradient- transport model with a composite timescale proposed by Chung & 
Kyong (1986) yields remarkably good numerical values in comparison to a more 
extensive theoretical model which requires long computational time and cost. An 
important observation is that all the streamwise transports of second-order moments 
are badly under-predicted compared to the vertical transports of the same moments. 
This suggests that the streamwise transport must have timescales different from 
those for the vertical or cross-stream transport of the second-order moments. It is 
believed that a comparative study of the present data with previous experiments on 
thermal turbulence in a grid-generated isotropic turbulence reviewed in $ 1  should 
reveal conclusive information on the role of the straining effect on the temperature 
field. 
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